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We study a nonequilibrium Ising model that stochastically evolves under the simultaneous operation of
several spin-flip mechanisms. In other words, the local magnetic fields change sign randomly with time due to
competing kinetics. This dynamics models a fast and random diffusion of disorder that takes place in dilute
metallic alloys when magnetic ions diffuse. We perform Monte Carlo simulations on cubic lattices up to
L=60. The system exhibits ferromagnetic and paramagnetic steady states. Our results predict first-order tran-
sitions at low temperatures and large disorder strengths, which correspond to the existence of a nonequilibrium
tricritical point at finite temperature. By means of standard finite-size scaling equations, we estimate the critical
exponents in the low-field region, for which our simulations uphold continuous phase transitions.
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I. INTRODUCTION

The random field Ising model �RFIM� is one of the most
studied systems in magnetism �for reviews, see �1,2� and
more recently �3�� because of its mathematical simplicity and
because the possibility of reproducing frustration, a phenom-
enon that occurs in real magnetic systems. In addition, the
identification of the RFIM with some diluted antiferromag-
nets in the presence of a uniform magnetic field �4,5�, such
as FexZn1−xF2 and FexMg1−xCl2 �2,6,7�, has attracted the at-
tention of theoretical and experimental researchers.

The equilibrium RFIM has extensively been studied by
different approaches, such as mean-field theory �8–10�, the
renormalization group �11,12�, and Monte Carlo �MC� simu-
lations �13,14�. However, the critical behavior of the non-
equilibrium case �15� is little understood, with the majority
of the results concerning one-dimensional systems �16–18�.
A mean-field theory was also developed �19�, but numerical
results are rare; to the best of our knowledge, only a recent
work considered the problem via MC simulations �20�.1

On the fact that there is a consensus that equilibrium
quenched models are a suitable representation of some real-
istic situations in physics, some controversies on basic issues
persist, and the interpretation of laboratory experiments by
models with quenched disorder is not satisfactory �1,21–23�.
Concerning spin glasses, for example, quenched models such
as the Edwards-Anderson �EA� �24� neglect the diffusion of
magnetically active ions. Diffusion constantly modifies the
distance between each specific pair of spin ions in certain
substances such as dilute metallic alloys �CuMn, for ex-
ample� and, consequently, one should probably allow for
variations both in space and time of the exchange interac-
tions in a model �21�. In the same way, we can imagine other
disordered systems in which the random variables change in
space and time, such as random-field models. These effects
do not seem to be correctly described by another class of

equilibrium models, namely, the annealed systems. For ex-
ample, the change with time of the spatial distribution of
couplings in the annealed version of the EA model �25� is
constrained by the need to reach equilibrium with the other
degrees of freedom. Therefore, impurities tend to be strongly
correlated, which is not observed in most substances �23�. As
a consequence, the annealed version of the EA model does
not exhibits a spin-glass state �25�. In addition, the equilib-
rium random-field models also present problems to describe
theoretically experimental results. While annealed and
quenched versions of the RFIM predict continuous phase
transitions between the ordered and disordered phases
�13,14,26�,2 measurements on diluted antiferromagnets such
as FexMg1−xCl2, which are prototypes of experimental real-
izations of systems under random fields �2�, showed that
these materials exhibit first-order phase transitions at low
temperatures �27�.

Thus, it has been claimed that nonequilibrium models
may be relevant to explain the behavior of certain materials
involving microscopic disorder such as spin glasses and
random-field systems �see �19,28� and references therein�. In
the case of disorder in the magnetic field, the nonequilibrium
model is defined by the Hamiltonian �23�

H = − J�
�i,j�

sisj − �
i

hisi, �1�

where the first summation ��i,j� represents the �constant� ex-
change interaction between nearest-neighbor pairs of spins
and the second term models the effects of random magnetic
fields. The nonequilibrium system is described at each time
by Hamiltonian �1�, and the random fields hi are spatially
distributed according to a given probability distribution
P�hi�. This corresponds to the well-known equilibrium
RFIM, but hi is continuously changed by the kinetics in such
a way that it always maintains itself as a realization of P�hi�.
As discussed in �17,19�, this kind of dynamics induces ran-
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1The nonequilibrium Ising spin glass was studied via MC simula-

tions in �21�.

2There are some controversies about the order of the low-
temperature phase transition in the RFIM, but recent simulations
suggest the occurrence of continuous transitions �13,14�.
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domness and a sort of dynamical frustration that does not
occurs in equilibrium models. In other words, one may as-
sume that spins and fields behave independently of each
other so that a conflict occurs, and a steady nonequilibrium
condition prevails asymptotically. This is consistent with the
reported observation of nonequilibrium effects, for example,
the influence of the details of the dynamical process �kinet-
ics� on the steady states in some real systems �see �17,23�
and references therein�.

The study of nonequilibrium models defined by Eq. �1�
reveals many interesting features �23�, with a rich variety of
phase transitions and critical phenomena. The known above-
discussed results reveal that the critical behavior is nonuni-
versal, but it generally depends on apparently irrelevant de-
tails of the dynamics, such as diffusion of impurities, i.e., the
properties of the distribution of the random variables, and the
transition rates chosen. In addition, nonequilibrium models
may be relevant to describe theoretically some real systems
�23�, as a magnetic material under the action of a random �or
very rapidly fluctuating� magnetic field, i.e., a field that var-
ies according to a given probability distribution with a period
shorter than the mean time between successive transitions
that modify the spin configuration or a disordered system
with fast and random diffusion of impurities such as in
random-field systems �16�.

Led by these motivations, we have studied the nonequi-
librium random-field Ising model �NRFIM� on a cubic lattice
with nearest-neighbor interactions and in the presence of a
random magnetic field that follows a bimodal probability
distribution. We performed Monte Carlo simulations on lat-
tices with sizes up to L=60, and our results suggest that the
phase transitions are continuous in the high-temperature and
low-field region, becoming of first-order type at low tem-
peratures and high disorder strengths. In the low-field region,
a finite-size scaling �FSS� analysis shows that the system
follows standard FSS laws, as was claimed in �20�.

II. MODEL AND MONTE CARLO SIMULATION

We have considered a random-field system described by
Hamiltonian �1� on a cubic lattice of linear dimension L, with
the random field �h	 following a bimodal probability distri-
bution,

P�h� =
1

2
��h − ho� +

1

2
��h + ho� , �2�

whose results in the mean-field approximation �19� and on
square lattices �20� obtained by numerical implementations
constitute an interesting means of comparison for our own
outcome. Any configuration s= �si	 evolves stochastically
with time by spin flips with rate

��si → − si� = min�1,exp�− �Hi/T�	 , �3�

which corresponds to the Metropolis’ algorithm �29�, and
�Hi stands for the flip energy cost �we set the Boltzmann
constant to unity�. For the numerical implementation, the
algorithm is as follows: at each time step, a new configura-
tion of random fields �h	 is generated according to P�h� �Eq.
�2��; then, every lattice site is visited, and a spin flip occurs
according to rate �3�. In other words, the random variables h
vary with time; i.e., the system is described at each time by
Eq. �1�, with h distributed according to P�h� given by Eq.
�2�. Thus, we have two different characteristic time scales:
one for the fluctuations of the spins and another one for the
fluctuations of the random field, and for simplicity we have
considered that these two fluctuations are independent �a for-
mal discussion about this is found in Ref. �23�, Chapter 7�.

In the following we use for simplicity J=1. We have stud-
ied systems of L=10, 12, 16, 20, 24, 30, 40, and 60 with
periodic boundary conditions and a random initial configu-
ration of the spins. We have analyzed the following values of
the parameters: 0.0�ho�5.0 and 0.01�T�10.0. The re-
sults for all values of the magnetic field parameter ho show
that finite-size effects are less pronounced for L�16. We can
test the equilibration of the system by monitoring the mag-
netization as a function of the MC time. We have found that
the steady states are easily achieved for low and high ho, as
shown in Fig. 1. Thus, we have used 5�103 MC steps for
equilibration and 3�106 MC steps for averaging.

Results for the magnetization per spin as a function of the
temperature are shown in Fig. 2. The results suggest that the
system goes continuously from the ferromagnetic �m=1� to
the paramagnetic steady state �m→0� for values of the dis-
order strength ho� 
3.7. For increasing values of ho, the
transition between the steady states becomes discontinuous,
which is an indication that the transition may be of first-order
type. For ho� 
4.3 the system is in the paramagnetic phase.
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FIG. 1. �Color online� Evolution of the magnetization as a function of the Monte Carlo time, for L=16. Examples for low �a� and high
disorder strength ho �b� are shown. As discussed in the text, the steady states are easily achieved for low and high ho.
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For the correct characterization of the discontinuous tran-
sition, we must analyze the fluctuations of the order param-
eter given by

��T� = L3 �m2� − �m�2

T
, �4�

where � � stands for MC or time average �21�. The suscepti-
bility as a function of the temperature is shown in Figs. 3�c�

and 4�a�, where we can easily distinguish two different be-
haviors, for discontinuous �ho=4.0� and continuous transi-
tions �ho=3.5�, respectively. As discussed in �20�, the sus-
ceptibility peak positions grow with the system size as

�max 
 La, �5�

where a=d for first-order transitions �30�, d is the dimension
of the lattice �d=3 in our case�, and a=	 /
�d for continu-
ous transitions. Fitting data of �max we have found, for
ho=4.0, that �see the inset of Fig. 3�c��

�max 
 Lb, �6�

where

b = 3.05 � 0.05, �7�

which is compatible with a first-order phase transition. In
addition, the first-order character of the transition is con-
firmed by the behavior of other quantities: the Binder
cumulant �31�, UL=1− �m4� /3�m2�2, which presents a char-
acteristic well-defined minimum near Tc �32� and the two-
peaked histogram of the magnetization near the critical tem-
perature �see Fig. 3�d��. On the other hand, for ho=3.5 we
have found that �max
L2.63 �see Fig. 4�b��, confirming the
continuous character of the transition �see also Fig. 5�a��, as
was observed earlier. The discontinuous transition also oc-
curs in the model for other values of ho �3.9, 4.1, 4.2, for
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FIG. 2. �Color online� Magnetization versus temperature for
L=60 and typical values of the disorder strength ho. We can observe
continuous phase transitions between the ordered and the disordered
phases for small values of ho, but for values near ho=4.0 we have
discontinuous transitions. For higher disorder the system is in the
paramagnetic state.
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FIG. 3. �Color online� Upper figures: magnetization as a function of temperature for ho=4.0 and for some lattice sizes L, showing
discontinuous transitions at the pseudocritical temperatures Tc�L� �a�. The inset shows simulations for L=60 using a smaller interval between
temperatures, where we can see points in the coexistence region �with 0�m�1�. It is also shown an illustration of the extrapolation
procedure to determine the critical temperature Tc for ho=4.0 �b�. Fitting data, we have obtained Tc�L�=0.186+0.424L−1, which results in
Tc�L�=0.186, in the thermodynamic limit �L−1→0�. Lower figures: susceptibility ��T� as a function of temperature for L=40 and ho=4.0,
where it is shown a jump near the critical temperature �c�. In the inset it is also shown the susceptibility peaks positions �max versus linear
lattice size in the log-log scale. The slope of the straight line is 3.05�0.05, which suggests a first-order transition for ho=4.0. This first-order
character is confirmed by the behavior of the Binder cumulant, which presents a characteristic well-defined minimum near the transition �d�.
It is also shown in the inset the double-peaked histogram of the magnetization near the critical temperature.

NONEQUILIBRIUM PHASE TRANSITIONS AND… PHYSICAL REVIEW E 81, 041138 �2010�

041138-3



example�, and the above-discussed behaviors were also ob-
served ��max
Ld, two-peaked histograms of m and a well-
defined minimum of the Binder cumulant�, indicating that
first-order phase transitions occur in the model for a small
range of the disorder strength ho at low temperatures. On the
other hand, as mentioned above, for high temperatures the
transition is continuous, indicating the occurrence of a finite-
temperature nonequilibrium tricritical point, where the or-
dered and the disordered phases become identical. The exact
location of this tricritical point is difficult to numerically
determine, but the simulations suggest that this point is in the
range 3.7�ho�3.8 �see Fig. 5�. This scenario is quite dif-
ferent from the two-dimensional �2D� �20� and the mean-
field cases �19� when the Metropolis transition rate was con-
sidered. While the 2D case is compatible with a continuous

critical frontier between the ferromagnetic and the paramag-
netic phases, and the mean-field approach foresees a first-
order frontier, we have found for the cubic lattice a continu-
ous transition for high temperatures and low disorder
strengths and a first-order transition for low temperatures and
high disorder.

In the 2D NRFIM �20�, the calculation of the critical ex-
ponents in the low-field region, where the phase transitions
are continuous, suggests that the standard FSS equations, i.e.,

Tc�L� = Tc − a L−1/
,

m�T,L� = L−�/
m̃��T − Tc�L1/
� , �8�

are valid. Based on Eq. �8�, we have calculated the critical
exponents � and 
 for ho=2.0, a disorder strength for which
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FIG. 4. �Color online� Susceptibility ��T� as a function of temperature for ho=3.5 and L=40 �a� and the peaks positions �max versus
lattice size L in the log-log scale �b�. The slope of the straight line is 2.63�0.10, which indicates a continuous transition for ho=3.5.
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FIG. 5. �Color online� Numerical results near the tricritical point for L=30 and a very small interval between temperatures
�T=0.005�. In figure �a� we show the Binder cumulant for disorder strengths ho=3.5, 3.6, and 3.7, showing the continuous character of the
transition, whereas in �b� we show the typical behavior of first-order transitions, for ho=3.8 and 3.9. In the lower figure we show the
corresponding plots of the magnetization per spin, where we can observe jumps for ho=3.8 and 3.9 �c�. These results suggest that the
tricritical point is located in the range 3.7�ho�3.8.
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the simulations suggest continuous phase transitions �see
Fig. 2�. The magnetization versus temperature curves are
shown in Fig. 6�a�, as well as the best collapse of data �Fig.
6�b��, which proves the validity of Eq. �8�. The critical tem-
perature of the infinite lattice Tc=Tc��� was obtained by ex-
trapolating the Tc�L� values given by the susceptibility peaks
positions, for which we have found Tc=2.97�0.11. The ex-
ponent related to the divergence of the correlation length 

may be calculated by means of the Binder cumulant �see Fig.
6�c��, which has the FSS form

UL = ŨL��T − Tc�L1/
� , �9�

where ŨL is a scaling function that is independent of L. We
have found for this case 
=1.67�0.03 �Fig. 6�d��. The ex-
ponent � was determined by the best collapse of the magne-
tization data �see Fig. 6�b��. Our estimate is �
=0.051�0.003. Thus, the results on three-dimensional �3D�
lattices confirm indications given in �20� that the nonequilib-
rium version of the RFIM follows standard FSS equations
for continuous transitions in the low-field region.

There are important differences between the critical be-
havior of the NRFIM in the presence of a bimodal random
field that was studied here and the corresponding quenched
RFIM. Despite the debate on the existence of a first-order
transition in the equilibrium RFIM still remains open, even
though some recent results suggest that the first-order transi-
tion features that appear in some simulations �13� are due to
finite-size effects �14�, our simulations strongly suggest that
a tricritical point exist in the NRFIM. In other words, the

rapid fluctuation of the random field, which is peculiar of the
nonequilibrium version of the RFIM, may be responsible for
the occurrence of first-order transitions. If we take into ac-
count that measurements in diluted antiferromagnets such as
FexMg1−xCl2, which are prototypes of experimental realiza-
tions of systems under random fields �2�, suggest that first-
order transitions occur in these materials at low temperatures
�27�, our results indicate that the NRFIM may be more ap-
propriate for a theoretical description of real systems than the
equilibrium RFIM.

Bearing in mind the critical temperatures of the system
calculated for various values of ho, by the above-described
extrapolating process, we show in Fig. 7 a sketch of the
phase diagram of the model in the plane temperature T ver-
sus disorder strength ho, separating the ferromagnetic �F� and
the paramagnetic �P� states. Notice that the first-order transi-
tion that occurs at low temperatures and high disorder was
not found on square lattices �20�, as previously discussed. In
the same figure we show an inset where the region near the
first-order transition can be seen in more details.

III. CONCLUSIONS

In this work, we have studied a random-field Ising model
with competing kinetics defined on a cubic lattice with
nearest-neighbor interactions by means of Monte Carlo
simulations. The lattice sizes analyzed were L=10, 12, 16,
20, 24, 30, 40, and 60. This system may be viewed as a
nonequilibrium version of the random-field Ising model. We
have found that the steady states are easily achieved for low
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FIG. 6. �Color online� Upper figures: magnetization per spin as a function of temperature �a� and the scaling plot according to the forms
in Eq. �8� for ho=2.0 and various linear lattice sizes L �b�. Lower figures: Binder cumulant as a function of temperature for ho=2.0 and some
lattice sizes �c� and the best collapse of data �d�, based on finite-size scaling Eq. �9�. All collapses were obtained with Tc=2.97, �=0.051,
and 
=1.67, as discussed in the text.
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and high ho, and for averaging, we have used 3�106 MC
steps.

The time evolution of the system is stochastic because of
competing spin-flip kinetics, which, in addition to the usual
heat bath, involves a random external magnetic field. The
competition induces a kind of dynamical frustration that
might be present in real disordered systems such as the class
of random-field materials �17�. This system differs from the
standard equilibrium ones: while the local field is randomly
assigned in space according to a distribution P�hi�, which
remains frozen in for the quenched case, and P�hi� contains
essential correlations in the annealed system, where the im-
purity distribution is in equilibrium with the spin system, our
case is similar to the quenched system at each time during
the stationary regime, but hi keeps randomly changing with
time, also according to P�hi�, at each site i. Consequently,
while frustration and randomness turn out to be rather unim-
portant in the annealed case, they are fundamental for the
behavior of the nonequilibrium system in a way which is
expected to produce macroscopic differences to the
quenched case. In fact, in the annealed RFIM phase diagram

�26� the critical temperature increases as we increase the
magnetic field intensity, whereas for the equilibrium
quenched RFIM �14� and the NRFIM the disorder strength
may destroy the ferromagnetic order. However, at low tem-
peratures, it is believed that the quenched case presents con-
tinuous transitions, whereas in the nonequilibrium one our
simulations suggest that first-order transitions occur.

While at mean-field level the results for the Metropolis
transition rate predict a first-order phase transition in all the
temperature versus disorder strength phase diagram in the
case of the bimodal distribution �19�, and MC simulations on
a 2D square lattice are compatible with continuous phase
transitions �20�, our numerical results suggest the occurrence
of first-order transitions only at low temperatures and large
disorder strengths. The order of the transition was confirmed
by three quantities, which present characteristic behaviors in
the case of a first-order transition: �i� the scaling of the sus-
ceptibility peaks, which grow with the total number of spins
L3 �30�; �ii� the Binder cumulant, which presents a charac-
teristic well-defined minimum �32�; and �iii� the histograms
of the magnetization, which are double peaked �32�. The
occurrence of a first-order transition at low temperatures in-
dicates the existence of a finite-temperature �nonequilibrium�
tricritical point, whose coordinates are difficult to determine
numerically though. Nonetheless, the simulations suggest
that this point is located in the range 3.7�ho�3.8. The same
behavior �first-order transition at low temperatures� was veri-
fied experimentally in the diluted antiferromagnets
FexMg1−xCl2 �27�, which are prototypes of experimental re-
alizations of systems under random fields �2�.

We performed a preliminary calculation of the critical ex-
ponents in the low-field region in order to test whether the
system follows continuous finite-size scaling laws, and we
have found that the random-field Ising model with compet-
ing kinetics obeys standard continuous FSS equations, as
suggested by Monte Carlo simulations on a square lattice
�20�. As extensions of this work, it can be analyzed the case
of spin-1 systems, as well as other relevant random-field
probability distributions.
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